Entrevistas

Hugo Mariano - Lógica e teoria de categorias

Neste vídeo, entrevistamos o professor Hugo Luiz Mariano. Hugo trabalha em diversas áreas em fundamentos da matemática. Falaremos sobre as representações de lógicas abstratas na teoria de categorias. Além disso, conversaremos sobre os lógicas algebrizáveis, as traduções entre lógicas e ideias gerais sobre os ganhos de um tratamento categorial para esse tipo de estrutura.

Referências

[1] Arndt, P., de Alvarenga Freire, R., Luciano, O. O., & Mariano, H. L. (2007). A global glance on categories in Logic. Logica Universalis, 1(1), 3-39.


[2] Conceição Pinto, D., & Luiz Mariano, H. (2017). Algebraizable Logics and a functorial encoding of its morphisms. Logic Journal of the IGPL, 25(4), 524-561.


[3] Mariano, H. L. (2004). Profinite structures are retracts of ultraproducts of finite structures. arXiv preprint math/0401095.


[4] Mariano, H. L., & Miraglia, F. (2011). The Profinite Hull of Special Groups and Local-Global Principles. Studia Logica, 97(1), 127-160.


[5] Mariano, H. L., & Miraglia, F. (2013). The Boolean and profinite hulls of reduced special groups. Logic Journal of IGPL, 21(2), 160-182.


[6] Astier, V., & Mariano, H. (2011). Realizing profinite reduced special groups. Pacific journal of mathematics, 250(2), 257-285.


[7] de Oliveira Ribeiro, H. R., de Andrade Roberto, K. M., & Mariano, H. L. (2020). Functorial relationships between multirings and the various abstract theories of quadratic forms. São Paulo Journal of Mathematical Sciences, 1-38.


Rodrigo Freire - Existência em teoria dos conjuntos

Neste vídeo entrevistamos o professor Rodrigo de Alvarenga Freire. Rodrigo têm trabalhado em diversos temas de lógica e fundamentos da matemática. Entretanto, nos concentramos em suas análises acerca da noção de existência em teoria de conjuntos e, em particular, abordamos a existência de objetos matemáticos e como a análise da noção de importe existencial elucida aspectos até então obscuros em teoria de conjuntos, além de diversos outros tópicos correlatos.

Referências

[1] Sobre a análise da noção de existência em teoria de conjuntos:

FREIRE, RODRIGO A.. On Existence in Set Theory. Notre Dame Journal of Formal Logic, v. 53, p. 525-547, 2012.


[2] A meta-análise das noções presentes no artigo anterior:

FREIRE, RODRIGO A.. On Existence in Set Theory, Part II: Relative Productivity. Notre Dame Journal of Formal Logic, v. 55, p. 91-105, 2014.


[3] Análise existencial e contribuição para adoção de novos axiomas:

FREIRE, RODRIGO A.. On Existence in Set Theory, Part III: Applications to New Axioms. SOUTH AMERICAN JOURNAL OF LOGIC, v. 1, p. 249-265, 2015.


[4] Trabalho em funções primeira ordem, vencedor do prêmio Newton da Costa em 2015:

FREIRE, RODRIGO A.. First-Order Logic and First-Order Functions. Logica Universalis (Online), v. 9, p. 281-329, 2015.


[5] Trabalho sobre a axiomatização da noção de forcing:

FREIRE, RODRIGO A.. An axiomatic approach to forcing and generic extensions. Comptes Rendus. Mathématique, v. 358, p. 757-775, 2020.


[6] Trabalho sobre como a prática matemática fixa a verdade em teoria de conjuntos:

FREIRE, RODRIGO A.. Interpretation and Truth in Set Theory. In: Carnielli, W.; Malinowski, J.. (Org.). Contradictions, from Consistency to Inconsistency. 1ed.: Springer International Publishing, 2018, v. 47, p. 183-205.

Walter Carnielli - Semântica de traduções possíveis

Nesse vídeo, entrevistamos o professor Walter Carnielli. Conversaremos sobre as semânticas de traduções possíveis propostas por ele e colaboradores. Tratam-se de semânticas apropriadas para lógicas paraconsistentes e seguem uma abordagem diferente das tradicionais semânticas algébricas.

Referências

[1]- Walter Carnielli. Many-valued logics and plausible reasoning. In Proceedings of the XX International Congress on Many-Valued Logics, held at the University of Charlotte / NC, US, 1990, pages 328–335. IEEE Computer Society, 1990.

[2]- Walter A. Carnielli. Possible-translations semantics for paraconsistent logics. In D. Batens, C. Mortensen, G. Priest, and J. P. Van Bendegem, editors, Frontiers of Paraconsistent Logic, Proceedings of the I World Congress on Paraconsistency, held in Ghent, BE, July 29–August 3, 1997, pages 149–163. Research Studies Press, Baldock, UK, 2000.

[3]- Walter A. Carnielli and João Marcos. Limits for paraconsistent calculi. Notre Dame Journal of Formal Logic, 40(3):375–390, 1999. http://projecteuclid.org/Dienst/UI/1.....

[4] Walter A. Carnielli and João Marcos. Ex contradictione non sequitur quodlibet. In R. L. Epstein, editor, Proceedings of the II Annual Conference on Reason- ing and Logic, held in Bucharest, RO, July 2000, volume 1, pages 89–109. Advanced Reasoning Forum, 2001. http://www.advancedreasoningforum.org....

[5] J. Marcos. Possible-Translations Semantics (in Portuguese). Master’s the- sis, State University of Campinas, BR, 1999. http://www.cle.unicamp.br/students/J.....

[6]- Walter A. Carnielli and Itala M. L. D’Ottaviano. Translations between logical systems: A manifesto. Logique et Analyse (N.S.), 40(157):67–81, 1997.

[7]- Carnielli, W.A , Lima-Marques, M., Society semantics for multiple-valued logics (1999) Advances In Contemporary Logic And Computer Science, 235 Of Contemporary Mathematics Series, pp. 33-52.

[8]-- Carnielli, W. A and J. Marcos, 2002, “A Taxonomy of C-systems”, in W. Carnielli, M.E. Coniglio, and I. D’Ottaviano, (eds), Paraconsistency: the logical way to the inconsistent. Proceedings of WCP’2000, volume 228 of Lecture Notes in Pure and Applied Mathematics, Boca Raton: CRC Press, pp. 1–94.

[9]- Carnielli W. A , Coniglio. Spliting Logics, In We Will Show Them! Essays in Honour of Dov Gabbay. Sergei Artemov, H. Barringer, A. S. D'Avila Garcez, L. C. Lamb & J. Woods (eds.) London, U.K.: College Publications (2005) Available from http://www.cle.unicamp.br/prof/conigl...

[10] - Walter Carnielli, Marcelo Coniglio,Dov M. Gabbay,Paula Gouveia and Cristina Sernadas. Analysis and Synthesis of Logics. Applied Logic Series, vol 35. Springer, Dordrecht, 2008. https://doi.org/10.1007/978-1-4020-67...

[11]- João Marcos. Logics of Formal Inconsistency (PhD Thesis), Unicamp. https://www.academia.edu/download/495...

[12]- Possible-translations semantics (Extended Abstract) (2004) COMBLOG’04 — PROCEEDINGS OF THE WORKSHOP ON COMBINATION OF LOGICS: THEORY AND APPLICATIONS, HELD IN LISBON, PTAvailable from: http://wslc.math.ist.utl.pt/ftp/pub/M...

[13]- Walter Carnielli and Marcelo E. Coniglio. Paraconsistent Logic: Consistency, Contradiction and Negation. Series Logic, Epistemology, and the Unity of Science, Springer, 2016.